228
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Identification of the Catalytic Residues of Carboxylesterase from Arthrobacter globiformis by Diisopropyl Fluorophosphate-Labeling and Site-Directed Mutagenesis

, &
Pages 89-94 | Received 10 Aug 2010, Accepted 19 Oct 2010, Published online: 22 May 2014
 

Abstract

The role of amino acid residues in the enzymatic activity of carboxylesterase from Arthrobacter globiformis was analyzed by diisopropyl fluorophosphate (DFP) labeling and site-directed mutagenesis. The electrospray ionization mass spectrometric (ESI-MS) analysis of the esterase, covalently labeled by DFP, showed stoichiometric incorporation of the inhibitor into the enzyme. The further comparison of endopeptidase-digested fragments between native and DFP-labeled esterase by fast atom bombardment mass spectrometric (FAB-MS) analysis as well as site-directed mutagenesis indicated that Ser59 in the consensus sequence Ser-X-X-Lys, which is conserved exclusively in penicillin-binding proteins and some esterases, served as a catalytic nucleophile. In addition, the results obtained from analysis of the mutants at position 62 suggested the importance of the basic amino acid side chain at this position, and suggested the significance of this residue acting directly as a general base rather than its involvement in the maintenance of the optimum hydrogen-bonding network at the active site.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.