1,230
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

The Vitamin D3 1alpha-Hydroxylase Gene and Its Regulation by Active Vitamin D3

&
Pages 208-213 | Published online: 22 May 2014
 

Abstract

Vitamin D has a pivotal role in a many biological processes, including the maintenance of calcium homeostasis, cell differentiation and proliferation. Most of these actions are mediated by transcriptional regulation of target genes through vitamin D receptor (VDR), a member the steroid/thyroid hormone receptor superfamily. Thus, it is important to understand vitamin D biosynthesis into an active form that regulates VDR transcriptional functions. The active form of vitamin D, 1α,25(OH)2D3, derived by vitamin D3 1alpha hydroxylase, 1α(OH)ase in renal proximal tubule cells is a ligand for VDR. We have identified the 1α(OH)ase gene, which uses a novel expression cloning method derived from VDR deficient mice that have excess amounts of active vitamin D3 in the serum. Identification of 1α(OH)ase gene had lead us to understand not only the biological significance of active vitamin D3 synthesis, but also a novel mechanism of VDR-mediated transcriptional regulation. The gene expression of 1α(OH)ase is positively and negatively regulated by parathyroid hormone (PTH) and active vitamin D3 respectively. In this review, we describe switching between positive and negative transcriptional modulation by the VDR, together with recent findings on the mechanisms of VDR-mediated epigenetic regulation in the 1α(OH)ase gene.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.