204
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

S-Adenosyl-L-methionine Activates Actinorhodin Biosynthesis by Increasing Autophosphorylation of the Ser/Thr Protein Kinase AfsK in Streptomyces coelicolor A3(2)

, , , , , & show all
Pages 910-913 | Received 07 Dec 2010, Accepted 28 Jan 2011, Published online: 22 May 2014
 

Abstract

S-Adenosyl-L-methionine (SAM) is one of the major methyl donors in all living organisms. The exogenous treatment with SAM leads to increased actinorhodin production in Streptomyces coelicolor A3(2). In this study, mutants from different stages of the AfsK-AfsR signal transduction cascade were used to test the possible target of SAM. SAM had no significant effect on actinorhodin production in afsK, afsR, afsS, or actII-open reading frame 4 (ORF4) mutant. This confirms that afsK plays a critical role in delivering the signal generated by exogenous SAM. The afsK-pHJL-KN mutant did not respond to SAM, suggesting the involvement of the C-terminal of AfsK in binding with SAM. SAM increased the in vitro autophosphorylation of kinase AfsK in a dose-dependent manner, and also abolished the effect of decreased actinorhodin production by a Ser/Thr kinase inhibitor, K252a. In sum, our results suggest that SAM activates actinorhodin biosynthesis in S. coelicolor M130 by increasing the phosphorylation of protein kinase AfsK.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.