1,147
Views
74
CrossRef citations to date
0
Altmetric
Original Articles

Total Biosynthesis of Diterpene Aphidicolin, a Specific Inhibitor of DNA Polymerase α: Heterologous Expression of Four Biosynthetic Genes in Aspergillus oryzae

, , , , , , & show all
Pages 1813-1817 | Received 11 May 2011, Accepted 05 Jun 2011, Published online: 22 May 2014
 

Abstract

Clustering of biosynthetic genes for producing fungal secondary metabolites, which frequently consist of less than ten genes, has been recognized with numerous genomes. The heterologous expression of whole genes in the clusters will therefore produce various types of natural products when using a suitable fungal host. We introduced the whole gene cluster for the biosynthesis of diterpene aphidicolin into the fungal quadruple auxotrophic host, Aspergillus oryzae, by using four different vectors (pTAex3, pPTRI, pUSA and pAdeA) which harbor a starch-inducible promoter/terminator to examine the expression conditions. The resulting quadruple transformant carrying the genes of geranylgeranyl diphosphate synthase PbGGS, terpene synthase PbACS, and two monooxygenases (PbP450-1 and PbP450-2) produced aphidicolin. The double and triple transformants also respectively produced aphidicolan-16β-ol and 3-deoxyaphidicolin. Alternative host Saccharomyces cerevisiae carrying the genes, PbGGS and PbACS, produced key intermediate aphidicolan-16β-ol. This is the first example of a total biosynthesis of terpenoids using fungal hosts.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.