1,608
Views
95
CrossRef citations to date
0
Altmetric
Original Articles

Erythropoietin: Multiple Physiological Functions and Regulation of Biosynthesis

, &
Pages 1775-1793 | Published online: 22 May 2014
 

Abstract

Erythropoietin (Epo), which is produced by the kidney in the adult and by the liver in the fetus, increases red blood cells by supporting the survival of erythroid progenitor cells and stimulating their differentiation and proliferation via binding to Epo receptor (EpoR). The main signal in the control of Epo production is oxygen; hypoxia stimulates Epo production through activation of Epo gene transcription. Tremendous progress in our understanding of molecular mechanisms of Epo action on erythroid cells and regulation of the Epo production has been made by manipulation of cDNAs and genes of Epo and EpoR. Studies on hypoxic induction of Epo gene transcription led to the identification of hypoxia-inducible factor (HIF-1), a transcriptional factor, that functions as a global regulator of hypoxic gene expression. Paracrine Epo/EpoR systems that are independent of the endocrine erythropoietic system (kidney/bone marrow) have been found in the central nervous system and uterus. Novel functions of Epo at these local sites and tissue-specific regulation of Epo production including a newly found potent regulator (estrogen) have been proposed. The tissue-specific regulation rationalizes the specific functions of Epo produced by individual tissues.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.