95
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Novel Substrate Specificity of Designer 3-Isopropylmalate Dehydrogenase Derived from Thermus thermophilus HB8

, , &
Pages 2695-2700 | Received 22 Jun 2001, Accepted 23 Aug 2001, Published online: 22 May 2014
 

Abstract

Redesigning of an enzyme for a new catalytic reaction and modified substrate specificity was exploited with 3-isopropylmalate dehydrogenase (IPMDH). Point-mutation on Gly-89, which is not in the catalytic site but near it, was done by changing it to Ala, Ser, Val, and Pro, and all the mutations changed the substrate specificity. The mutant enzymes showed higher catalytic efficiency (kcat/Km) than the native IPMDH when malate was used as a substrate instead of 3-isopropylmalate. More interestingly, an additional insertion of Gly between Gly-89 and Leu-90 significantly altered the substrate-specificity, although the overall catalytic activity was decreased. Particularly, this mutant turned out to efficiently accept D-lactic acid, which was not accepted as a substrate by wild-type IPMDH at all. These results demonstrate the opportunity for creating novel enzymes by modification of amino acid residues that do not directly participate in catalysis, or by insertion of additional residues.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.