639
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Salts and Glycine Increase Reversibility and Decrease Aggregation during Thermal Unfolding of Ribonuclease-A

&
Pages 880-882 | Received 17 Sep 2001, Accepted 02 Nov 2001, Published online: 22 May 2014
 

Abstract

Ribonuclease-A (RNase-A) has been a model for studying protein folding and unfolding. However, we show here that its unfolding at neutral pH is complicated by aggregation. Circular dichroism thermal scans showed that reversibility of RNase-A after heating is only about 63%. In accordance with this observation, native-polyacrylamide gel electrophoresis of the sample heated at 75°C showed formation of soluble oligomers. Ammonium sulfate at 0.4 M caused about a 3°C higher melting temperature and nearly complete reversibility, while glycine and NaCl at 0.4 M significantly increased reversibility and decreased aggregation without affecting melting temperature. These results demonstrate that aggregation makes thermal unfolding of RNase-A at least partially irreversible and salts and glycine increase reversibility and decrease aggregation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.