247
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Induction Mechanism of 3-Hydroxy-3-methylglutaryl-CoA Reductase in Potato Tuber and Sweet Potato Root Tissues

, &
Pages 1007-1017 | Received 30 Oct 2002, Accepted 15 Jan 2003, Published online: 22 May 2014
 

Abstract

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC1.1.1.34), the key enzyme in isoprenoid biosynthesis, was purified from microsomes of potato tuber tissue, and a polyclonal antibody and two monoclonal antibodies against the purified enzyme were prepared. HMGR protein content was measured by immunotitration and radioimmunoassay using these antibodies. HMGR activity was very low in the fresh tissues of both potato tuber and sweet potato root. The activity in potato tuber was increased by cutting and further by additional fungal infection of the cut tissues. In sweet potato root tissue, the activity was scarcely increased after cutting alone, but was markedly increased by additional fungal infection or chemical treatment. The HMGR protein contents in both fresh potato tuber and sweet potato root tissues were also very low, and increased markedly in response to cutting and fungal infection. From these results, we proposed a hypothesis on the induction mechanism of HMGR after cutting and fungal infection in potato tuber and sweet potato root tissues.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.