263
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Role of Endo-1,4-β-glucanases from Neisseria sicca SB in Synergistic Degradation of Cellulose Acetate

, , &
Pages 250-257 | Received 15 Mar 2002, Accepted 07 Oct 2002, Published online: 22 May 2014
 

Abstract

An enzyme hydrolyzing β-1,4 bonds in cellulose acetate was purified 10.5-fold to electrophoretic homogeneity from a culture supernatant of Neisseria sicca SB, which assimilate cellulose acetate as the sole carbon and energy source. The enzyme was an endo-1,4-β-glucanase, to judge from the substrate specificity and hydrolysis products of cellooligosaccharides, we named it endo-1,4-β-glucanase I (EG I). Its molecular mass was 50 kDa, 9 kDa larger than EG II from this strain, and its isoelectric point was 5.0. Results of N-terminal and inner-peptide sequences of both enzymes, and a similarity search, suggested that EG I contained a carbohydrate-binding module at the N-terminus and that EG II lacked this module. The pH and temperature optima of EG I were 5.0-6.0 and 45°C. It hydrolyzed water-soluble cellulose acetate (degree of substitution, 0.88) and carboxymethyl cellulose. The K m and V max for these compounds were 0.296% and 1.29 μmol min-1 mg-1, and 0.448% and 13.6 μmol min-1 mg-1, respectively. Both glucanases and cellulose acetate esterase from this strain degraded water-insoluble cellulose acetate synergistically.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.