190
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Improving the Pyrophosphate-inosine Phosphotransferase Activity of Escherichia blattae Acid Phosphatase by Sequential Site-directed Mutagenesis

, , &
Pages 1046-1050 | Received 10 Oct 2003, Accepted 27 Jan 2004, Published online: 22 May 2014
 

Abstract

Escherichia blattae acid phosphatase/phosphotransferase (EB-AP/PTase) exhibits C-5′-position selective pyrophosphate-nucleoside phosphotransferase activity in addition to its intrinsic phosphatase. Improvement of its phosphotransferase activity was investigated by sequential site-directed mutagenesis. By comparing the primary structures of higher 5′-inosinic acid (5′-IMP) productivity and lower 5′-IMP productivity acid phosphatase/phosphotransferase, candidate residues of substitution were selected. Then a total of 11 amino acid substitutions were made with sequential substitutions. As the number of substituted amino acid residues increased, the 5′-IMP productivity of the mutant enzyme increased, and the activity of the 11 mutant phosphotransferases of EB-AP/PTase reached the same level as that of Morganella morganii AP/PTase. This result shows that Leu63, Ala65, Glu66, Asn69, Ser71, Asp116, Thr135, and Glu136, whose relevance was not directly established by structural analysis alone, also plays an important role in the phosphotransferase activity of EB-AP/PTase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.