267
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Improvement of 2′-Hydroxybiphenyl-2-sulfinate Desulfinase, an Enzyme Involved in the Dibenzothiophene Desulfurization Pathway, from Rhodococcus erythropolis KA2-5-1 by Site-Directed Mutagenesis

, , , , , & show all
Pages 2815-2821 | Received 09 Jul 2007, Accepted 06 Aug 2007, Published online: 22 May 2014
 

Abstract

In the microbial dibenzothiophene desulfurization pathway, 2′-hydroxybiphenyl-2-sulfinate is converted to 2-hydroxybiphenyl and sulfinate by desulfinase (DszB) at the last step, and this reaction is rate-limiting for the whole pathway. The catalytic activity and thermostability of DszB were enhanced by the two amino acid substitutions. Based on information on the 3-D structure of DszB and a comparison of amino acid sequences between DszB and reported thermophilic and thermostable homologs (TdsB and BdsB), two amino acid residues, Tyr63 and Gln65, were selected as targets to mutate and improve DszB. These two residues were replaced by several amino acids, and the promising mutant enzymes were purified and their properties were examined. Among the wild-type and mutant enzymes, Y63F had higher catalytic activity but similar thermostability, and Q65H showed higher thermostability but less catalytic activity and affinity for the substrate. To compensate for these drawbacks, the double mutant enzyme Y63F-Q65H was purified and its properties were investigated. This mutant enzyme showed higher thermostability without loss of catalytic activity or affinity for the substrate. These superior properties of the mutant enzyme have also been confirmed with resting cells harboring the mutant gene.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.