163
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Ferrous Iron Production Mediated by Tetrathionate Hydrolase in Tetrathionate-, Sulfur-, and Iron-Grown Acidithiobacillus ferrooxidans ATCC 23270 Cells

, &
Pages 1381-1386 | Received 14 Jan 2009, Accepted 16 Feb 2009, Published online: 22 May 2014
 

Abstract

When tetrathionate-grown Acidithiobacillus ferrooxidans ATCC 23270 cells were incubated with ferric ions and tetrathionate at pH 3.0, ferrous ions were produced enzymatically. Fe3+-reductase, which catalyzes Fe3+ reduction with tetrathionate, was purified to homogeneity not only from tetrathionate-grown, but also from sulfur- and iron-grown A. ferrooxidans ATCC 23270 cells. The results for apparent molecular weight measured by SDS–PAGE (52.3 kD) and the N-terminal amino acid sequences of the purified enzymes from iron-, sulfur, and tetrathionate-grown cells (AVAVPMDSTG) indicate that Fe3+-reductase corresponds to tetrathionate hydrolase. The evidence that tetrathionate-grown A. ferrooxidans ATCC 23270 cells have high iron-oxidizing activity at the early log phase, comparable to that of iron-grown ATCC 23270 cells, is supported by our finding that tetrathionate hydrolase produces Fe2+ from tetrathionate during growth on tetrathionate. This is the first report on ferric reductase activity associated with tetrathionate hydrolase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.