366
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Activation of the Oxidative Stress Regulator PpYap1 through Conserved Cysteine Residues during Methanol Metabolism in the Yeast Pichia pastoris

, &
Pages 1404-1411 | Received 10 Feb 2009, Accepted 11 Mar 2009, Published online: 22 May 2014
 

Abstract

The methylotrophic yeast Pichia pastoris can grow on methanol as sole source of carbon and energy. The first reaction in yeast methanol metabolism, catalyzed by an abundant peroxisomal enzyme, alcohol oxidase, generates high levels of H2O2, but the oxidative stress response during methanol metabolism has not been elucidated. In this study, we isolated the Yap1 homolog of P. pastoris (PpYap1) and analyzed the properties of a PpYAP1-disruption strain. The PpYap1 transcription factor is activated after exposure to various reactive agents, and therefore functions as a regulator of the redox system in P. pastoris. We have also identified PpGPX1, the unique glutathione peroxidase-encoding gene in P. pastoris whose expression is induced by PpYap1. PpGpx1, but not the ScTsa1 or SpTpx1 homolog PpTsa1, functions as a H2O2 sensor and activates PpYap1. This study is the first demonstration of a yeast Yap1 family protein activated during conventional metabolism.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.