236
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Protective Effects of Cinnamomum cassia Blume in the Fibrogenesis of Activated HSC-T6 Cells and Dimethylnitrosamine-Induced Acute Liver Injury in SD Rats

, , , , , , , & show all
Pages 477-483 | Received 19 Jun 2009, Accepted 05 Dec 2009, Published online: 22 May 2014
 

Abstract

Cinnamomum cassia Blume (CC) is one of the world’s oldest natural spices, and is commonly used in traditional oriental medicine. We investigated the protective effect of ethanol extract from Cinnamomum cassia Blume (CCE) on the activation of hepatic stellate cells (HSCs). In addition, we examined the effects of CC powder in Sprague-Dawley rats with acute liver injury induced by dimethylnitrosamine (DMN). In vitro, HSC-T6 cells exhibit an activated phenotype, as reflected in their fibroblast-like morphology. CCE significantly reduced the expression of alpha-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), transforming growth factor beta (TGF-β1), and tissue inhibitor of metalloproteinase-1 (TIMP-1). In vivo, the results were significantly protected by CC powder in the serum total protein, albumin, total-bilirubin, direct-bilirubin, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and alkaline phosphatase (ALP). We suggest that CC inhibits fibrogenesis, followed by HSC-T6 cell activation and increased restoration of liver function, ultimately resulting in acute liver injury.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.