107
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Oxidative Stress in the Ischemic and Non-Ischemic Parts of the Rat Liver after Two-Thirds Ischemia/Reperfusion

, , , , , , , , & show all
Pages 979-983 | Received 12 Nov 2009, Accepted 21 Jan 2010, Published online: 22 May 2014
 

Abstract

Rat liver was subjected to two-thirds warm ischemia for 45 min and reperfusion (I/R) to evaluate the resulting oxidative stress. The plasma alanine aminotransferase and aspartate aminotransferase activities were significantly higher than those in the sham group 1.5–24 h after I/R, showing extensive liver cell death. The level of oxidative stress was compared between the ischemic and non-ischemic regions based on the change in antioxidative vitamins C and E. The vitamin C level was significantly decreased during I/R in both the ischemic and non-ischemic regions 0, 1.5, 3, 6, 12, and 24 h after the start of reperfusion, showing enhanced oxidative stress even in the non-ischemic lobules. This decrease of vitamin C in the ischemic region was significantly higher than that in the non-ischemic lobules, while the vitamin E content was decreased only in the ischemic lobes, demonstrating higher oxidative stress in the ischemic region than that in the non-ischemic region. Early transient activation of cytoprotective extracellular signal-related kinase (ERK) was apparent in both the ischemic and non-ischemic lobules, reflecting oxidative stress in both regions. Early transient activation of c-Jun NH2-terminal kinase (JNK) was only apparent in the ischemic region, corresponding to extensive oxidative stress and liver cell death. These results demonstrate that significant oxidative stress was induced, but that JNK leading to cell death was not activated in the non-ischemic part of the liver.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.