38
Views
6
CrossRef citations to date
0
Altmetric
Technical Paper

Influence of Temperature and Pressure on the Beryllium Pebbles Bed Electrical Resistivity

, , , , &
Pages 320-325 | Published online: 09 May 2017
 

Abstract

The electrical resistivity behaviour of a beryllium pebble bed has been studied as a function of the temperature and pressure. At room temperature the resistivity of a single size 2 mm pebble bed decreases drastically from 2·10−2 Ωm to 10−4Ωm by applying an external pressure. After this first drop, the resistivity shows an almost linear decrease with the applied pressure. The same trend appears for a single size 0.1–0.2 mm pebble bed, but the resistivity values are about one order of magnitude higher than in the case of the 2 mm pebbles. At room temperature, the lowest resistivity values were found for the case of a binary pebble bed.

After a mechanical cycling the electrical resistivity of the bed never reaches its initial value for zero pressure but it remains about one order of magnitude below the original value. After the first loading cycle the following loading/unloading resistivity curves do not show any significant change.

The temperature dependence of the mixed pebble bed was investigated in air at 300 °C, 450 °C and 550 °C. The resistivity behaviour of the pebble bed with the applied pressure is, at high temperature, qualitatively the same as that observed at room temperature. For the same applied load the pebble bed electrical resistivity increases almost linearly with the temperature.

Measurements of the oxyde content of the pebbles before and after the heating show a higher beryllium oxide content for the heated pebbles than for the not heated ones.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.