25
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

Burning Plasma Confinement Projections and Renormalization of the GLF23 Drift-Wave Transport Model

, &
Pages 763-775 | Published online: 27 Mar 2017
 

Abstract

Fusion power predictions are presented using the GLF23 drift-wave transport model for several next-step tokamak designs including ITER, FIRE, and IGNITOR. The GLF23 model has been renormalized using recent gyrokinetic simulations and a database of nearly 50 H-mode discharges from three different tokamaks. The renormalization reduces the ion temperature gradient/trapped electron mode (ITG/TEM)-driven transport by a factor of 3.7 while electron temperature gradient (ETG) mode transport is increased by a factor of 4.8 with respect to the original model. Using the renormed model, the fusion power performance is uniformly assessed, and the pedestal requirements are summarized for each device. The renormed model is still quite stiff and yields somewhat more optimistic predictions for next-step burning plasma experiments. The consequences of stiff transport in the plasma core are discussed. A fusion fit formula is derived whereby the GLF23 results follow a universal stiff model curve for the normalized fusion power versus pedestal temperature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.