17
Views
4
CrossRef citations to date
0
Altmetric
Technical Paper

Hybrid Scenario Development in DIII-D

, , , , , , , & show all
Pages 1199-1211 | Published online: 07 Apr 2017
 

Abstract

Experiments in the DIII-D tokamak have demonstrated the ability to sustain ELMing H-mode discharges with high beta and good confinement quality under stationary conditions. These experiments have shown the ability to sustain normalized fusion performance (in terms of βNH89P /q952) at or above that projected for Qfus = 10 operation in the International Thermonuclear Experimental Reactor (ITER) design over a wide range in operating parameters. In the best cases, operation is maintained at the free boundary, n = 1 stability limit. Confinement is found to be better than standard H-mode confinement scalings over a wide range in operation space, and experimentally measured transport is consistent with predictions from the GLF23 transport code. Projections using the standard ITER H-mode scaling laws based on these discharges indicate that Qfus = 5 can be maintained for >5400 s in ITER at q95 = 4.5 while Qfus = 40 can be obtained for ~2400 s at q95 = 3.2. These projected performance levels further validate the ITER design and suggest that long-pulse, high neutron fluence operation as well as very high fusion gain operation may be possible in next-generation tokamaks.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.