37
Views
10
CrossRef citations to date
0
Altmetric
Technical Paper

Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor Under IFE Conditions

, &
Pages 574-578 | Published online: 07 Apr 2017
 

Abstract

During Helium implantation or generation in finite geometries, space dependent parameters and features affect Helium transport through the material. Conventional kinetic rate-theory models assume strictly homogeneous field parameters and as such can not directly resolve space dependent phenomena of helium transport. The current work outlines a new approach to simulate space-dependent helium transport during irradiation in finite geometries. The model and the numerical code, called HEROS, are described and applied to simulate typical IFE relevant helium implantation conditions. A case study using the HAPL IFE reactor design is used to demonstrate the capabilities of the HEROS code. It is shown that the HEROS code is capable of simulating very complex transient and space dependent Helium transport in finite geometries, including the simultaneous transient production of defects and space- and time-dependent temperature and temperature gradients. Space dependent nucleation and growth of helium bubbles during implantation are modeled along with the impact of biased migration and coalescence of Helium bubbles.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.