41
Views
8
CrossRef citations to date
0
Altmetric
Chapter 3. Confinement and Transport

Characteristics of the Global Energy Confinement and Central Pressure in LHD

, , , , , , , , , , & show all
Pages 29-37 | Published online: 07 Apr 2017
 

Abstract

Global energy confinement in the Large Helical Device has been proved to be comparable to those of tokamaks in ELMy H-mode. It shows a gyro-Bohm-like property as seen in international stellarator scalings. This implies that the anomalous transport dominates the neoclassical transport. At least in the configurations with small helical ripples, no significant collisionality dependence predicted by the neoclassical theory has been observed. Confinement degradation compared with the international stellarator scalings often takes place in the plasmas with high peripheral density. In many cases, this is due to the shallow penetration of heating beams. Adding to this, deviation from gyro-Bohm can be caused by the emergence of a “weak temperature dependence” of the thermal diffusivity. It depends on the plasma parameters whether this weak temperature dependence deteriorates or improves the thermal transport. The central pressure that is also an important parameter for envisioning a fusion reactor is not necessarily proportional to the global confinement. The central pressure is insensitive to the variation of magnetic configuration that strongly affects the global confinement.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.