70
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

NTM Localization by Correlation of Te and dB/dt

, , &
Pages 309-313 | Published online: 17 Mar 2017
 

Abstract

For electron cyclotron current drive-based stabilization of neoclassical tearing modes (NTMs), it is crucial that the current deposition occurs as close to the island as possible; hence, its location needs to be accurately known. An NTM, rotating in the laboratory frame, causes fluctuations of magnetic flux measurable by Mirnov coils (dB/dt). Temperature perturbations in the vicinity of an NTM are caused by displaced flux surfaces and thus have the same frequency as the Mirnov signal but show a constant phase difference, which depends on the mode topology (poloidal and toroidal periodicity), on the toroidal displacement of the Mirnov coil with respect to the temperature measurement, and on the sign of the temperature change between the X-point profile and the O-point profile, which inverts somewhere inside the island. The sign flip of ΔTe is equivalent to a change of the phase difference between Te and magnetic reference by π and therefore can be localized using the presented correlation method. Using the suggested algorithm, we can determine the rational surface that coincides with the radial island location with low latency and good reliability in real time from electron cyclotron emission temperature profiles when correlated with the appropriate magnetic fluctuations on a modern workstation computer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.