41
Views
32
CrossRef citations to date
0
Altmetric
Technical Paper

Development of Divinylbenzene Foam Shells for Use as Inertial Fusion Energy Reactor Targets

&
Pages 321-326 | Published online: 12 May 2017
 

Abstract

An overview of the present status of development of a hollow foam shell designed to produce high yields when used in a krypton fluoride inertial fusion energy (IFE) reactor is presented. Prototype shells have been produced from a 100 mg/cm3 density CH foam with an ~4-mm diameter and 300 μm wall thickness. A triple-orifice droplet generator was used to form the shells using solutions of an internal water phase, an oil phase (divinylbenzene monomer, dibutyl phthalate solvent, and a radical initiator), and an external water phase. The lowest percent of nonconcentricity measured for a completed shell was 3%, and the lowest average percent of nonconcentricity for a batch of shells was 7%. A technique to overcoat the shells with a 1- to 5-μm-thick full-density polymer layer using an interfacial polycondensation reaction is being developed. Methods to further optimize dimensions to produce shells that meet IFE specifications are also discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.