4
Views
0
CrossRef citations to date
0
Altmetric
Inertial Confinement Fusion Driver Technology

The Compact Torus Accelerator a Driver for ICFFootnote*

, &
Pages 679-685 | Published online: 10 Aug 2017
 

ABSTRACT

We have carried out further investigations of technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically-confined, torus-shaped plasma is compressed, accelerated and focused by two concentric electrodes. Here, we evaluate an accelerator point design with a capacitor bank energy of 9.2 MJ. Modeled by a O–D code, the system produces a xenon plasma ring with a radius of 0.73 cm, a velocity of 4×107m/s, and a mass of 4.4 µg. The plasma ring energy available for fusion is 3.8 MJ, a 40% driver efficiency. Ablation and magnetic pressures of the point design, due to CT acceleration, are analyzed. Pulsed-power switching limitations and driver cost analysis are also presented. Our studies confirm the feasibility of producing a ring to induce fusion with acceptable gain. However, some uncertainties must be resolved to establish viability.

Notes

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.