10
Views
1
CrossRef citations to date
0
Altmetric
Material and Tritium

Zirconium Cobalt for Tritium Storage: Some Bed Design and Operation Considerations

, &
Pages 1686-1691 | Published online: 10 Aug 2017
 

Abstract

A zirconium cobalt bed has been designed with large conductance, low porosity filters and a large bed containment mass to improve the rate of hydriding. By ensuring that sufficient thermal ballast is available, the hydriding rate will be exponential thereby approaching the desired isothermal limit. Loading dependencies upon initial tank pressure and bed capacity at ambient temperature have been studied. Hydrided ZrCo powder was observed to spontaneously combust in air at ambient temperature after undergoing 12 hydriding/dehydriding cycles. ZrCo powder progressively fragments into submicronic fines with continued bed cycling up to 35 bed cycles. No permanent degradation in the rate of hydrogen loading onto ZrCo has been observed during 95 hydriding/dehydriding cycles.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.