3
Views
55
CrossRef citations to date
0
Altmetric
Technical Paper

Potential of a Catalyzed Fusion-Driven Hybrid Reactor for the Regeneration of Candu Spent Fuel

, &
Pages 26-39 | Published online: 09 May 2017
 

Abstract

The potential of a catalyzed fusion-driven fast hybrid blanket to regenerate Canada deuterium uranium (CANDU) spent fuel is investigated. The investigations are done to achieve enrichment grades of fissile isotopes (EGFIs) in four applications: 1. recycling in a conventional commercial CANDU reactor (EGFI = 0.71 to 0.9%) 2. recycling in an advanced conceptual CANDU reactor with a high burnup rate (EGFI = 1%) 3. recycling in an advanced breeder with thorium fuel (EGFI > 1.5%) 4. recycling in a conventional light water reactor (LWR)(EGFI>3%). The regeneration periods of 5 to 7, 6 to 9, 12 to 15, and >30 months, respectively, are evaluated for the four reactor types under a first-wall fusion neutron current load of 1014(2.45-MeV n)/cm2-s and 1014(14.1-MeV n)/cm2-s, corresponding to 2.64 MW/m2 and a plant factor of 75%. During the regeneration process, the burnup rates vary from 2000 MWd/t (for conventional CANDU) to 10000 MWd/t (forLWRs), so that multiple recycling becomes possible.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.