33
Views
2
CrossRef citations to date
0
Altmetric
Technical Paper

Computational Modeling of Coupled Thermomechanical and Neutron Transport Behavior in a Godiva-Like Nuclear Assembly

, &
Pages 344-353 | Published online: 10 Apr 2017
 

Abstract

The primary shutdown mechanism of all-metal nuclear assemblies engaging in pulsed operations is thermal expansion of the fuel material. Typically, a fuel temperature coefficient of reactivity is acquired by building the apparatus and fitting the operational data to the Nordheim-Fuchs kinetics equations. This value may vary as a function of reactivity insertion because of thermomechanical effects in the fuel material, which leads to uncertainty regarding untested reactor designs. This paper presents a computational method for modeling power, temperature, and thermoelastic displacement behavior of a spherical Godiva-like assembly during a prompt supercritical excursion and provides a way of determining fuel temperature coefficients of reactivity without the use of operational data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.