26
Views
6
CrossRef citations to date
0
Altmetric
Technical Paper

A Diffusion Synthetic Acceleration Method for Block Adaptive Mesh Refinement

, &
Pages 164-179 | Published online: 10 Apr 2017
 

Abstract

A multidimensional block-based adaptive mesh refinement (BAMR) method for the neutral particle transport equation with diamond and linear discontinuous spatial differencing was developed several years ago. This method was implemented in the PARallel TIme-dependent SN (PARTISN) deterministic transport code. However, the only source acceleration method available with BAMR was transport synthetic acceleration. Although the block-based adaptive mesh is orthogonal, the individual mesh cells may not be simply connected. Because of this lack of simple connectivity, development of a fully consistent diffusion synthetic acceleration (DSA) method has not been possible. This paper describes the development of a DSA method based upon an additive correction to the scalar flux iterate after a transport sweep. This DSA equation is differenced using a vertex-centered diffusion discretization that is diamond-like and may be characterized as “partially” consistent. It does not appear algebraically possible to derive a diffusion discretization that is fully consistent with diamond transport differencing on AMR meshes. The diffusion matrix is symmetric positive definite, and the DSA method is effective for most applications. This BAMR-DSA solver has been implemented and tested in two dimensions for rectangular (X-Y) and cylindrical (R-Z) geometries. As expected, results confirm that a partially consistent BAMR-DSA method will introduce instabilities for extreme cases (e.g., scattering ratios approaching 1.0 with optically thick cells), but for most realistic problems, e.g., the iron-water shielding problem, the BAMR-DSA method provides an effective acceleration method.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.