20
Views
2
CrossRef citations to date
0
Altmetric
Technical Paper

A Physics Study of a 600-MW(thermal) Gas-Cooled Fast Reactor

, &
Pages 204-218 | Published online: 10 Apr 2017
 

Abstract

A neutronic feasibility study was performed for a 600-MW(thermal) gas-cooled fast reactor fuel cycle through recycling simulations. Sensitivity calculations were also performed for various physics design parameters such as the plutonium volume fraction of the fuel, fuel burnup, core material volume fraction, and the power density. The results showed that the initial breeding gain of –0.04755 is sufficient to sustain the recycling of the actinides with a reasonable amount of natural uranium and plutonium feed material. The comparative calculation on the core power density has shown that it is feasible to reduce the amount of minor actinides and spent fuel in the high power density core (98.4 MW/m3) compared to the reference core (58.2 MW/m3). It was also found that the fuel cycle cost is saved by 0.4 mills/kW·h for the high power density core compared to the reference core.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.