83
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

Role of Neutron Sources, Xenon, and Decay Heat Dynamics in Autonomous Reactor Shutdown and Recriticality

Pages 273-282 | Published online: 12 May 2017
 

Abstract

An analysis is presented of reactor dynamics during inherent shutdown and recriticality after loss of cooling without scram. The influence of the strength of external neutron sources is studied, and the dynamics of fission product decay heat is explicitly taken into account. It is shown that decay heat and (in thermal reactors) xenon dynamics play a dominant role in inherent reactor shutdown. Fission power level at first spontaneous recriticality is determined by both the strength of the external/inherent neutron sources and the reactivity ramp rate induced by xenon decay and cooling down of the subcritical reactor core. The first power surge after recriticality is only very weakly dependent on the external/inherent neutron source strength, and the amplitude of fission power oscillations is mainly determined by the reactivity ramp rate at first recriticality. Frequency and stability of the power oscillations after recriticality depend on the thermal inertia of the core and the power-reactivity defect. Stability is slightly deteriorated by the fission product decay dynamics, but the influence of xenon dynamics is negligible.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.