13
Views
2
CrossRef citations to date
0
Altmetric
Technical Paper

A Coupled Model for Oxidative Dissolution of Spent Fuel and Transport of Radionuclides from an Initially Defective Canister

&
Pages 273-285 | Published online: 10 Apr 2017
 

Abstract

An earlier model for oxidative dissolution of spent fuel was developed by including the release behavior of actinides from the fuel surface and the barrier effect of Zircaloy claddings. The aim here is to explore the possibility and consequences of precipitation in the water film around the fuel pellets due to solubility and transport limitations of nuclides. The model has been applied in the performance assessment of a damaged canister under natural repository conditions, by coupling to a redox-front-based model for transport of nuclides. The simulation results identify that the time of penetration of the canister, the size of the damage, and the initial free volume of the fuel rods are important factors that dominate the dissolution behavior of the fuel matrix and thus the transport behavior of actinides in the near field of a repository.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.