15
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Turbulence Model Assessment for Flow Across a Row of Confined Cylinders

, &
Pages 268-276 | Published online: 10 Apr 2017
 

Abstract

The effectiveness of five different turbulence models is assessed for the flow across a row of confined cylinders at a pitch-to-diameter ratio of 1.7 and at Reynolds numbers ranging from 2621 to 55 920. Models examined include the one-equation Spalart-Almaras model; two-equation realizable k - ɛ, k - ω, and shear stress transport models; and a four-equation v2 - f model. Quantities compared against published experimental data include minor loss coefficients, separation angles about cylinders, wake lengths behind cylinders, and streamwise velocity profiles at the periodic inlet/outlet boundaries. Results indicate that each of the models did a reasonable job in predicting the minor loss coefficient as a function of Reynolds number. With the exception of the k - ɛ model, each was also able to predict the experimentally observed trend of decreasing wake and separation lengths with increasing Reynolds number. In addition, all models also predicted a local minimum in the separation angle about the inner cylinder as a function of Reynolds number, which has also been observed experimentally. Our conclusion is that the v2 - f model performed slightly better at predicting the experimental data than any of the other models examined, although at the computational expense of solving two additional equations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.