10
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Irradiation Test of MOX Fuel Rods Fabricated by Attrition-Milling and Analysis of In-Pile Data with COSMOS Code

, , , , , & show all
Pages 246-254 | Published online: 10 Apr 2017
 

Abstract

Attrition-milling technology for fabricating mixed oxide (MOX) fuel was developed to mix the plutonium in UO2 fuels as homogeneously as possible. The fabricated MOX fuels were instrumented with temperature and pressure gauges that enabled one to measure the fuel temperature and rod internal pressure online. An irradiation test in the Halden reactor was performed to investigate the in-pile behavior of the fabricated MOX fuel. The irradiation of 1020 effective full-power days was successfully accomplished with good integrity of the test fuel rods. The rod average burnup reached ~50 MWd/kg HM, and the measured fuel centerline temperature was ~1000°C for the MOX fuels. A significant fission gas release was observed due to the high power level. The online measured in-pile performance data of the two attrition-milled MOX fuel rods were analyzed and compared with the fuel performance code COSMOS. COSMOS simulated the fuel centerline temperature and rod internal pressure for both MOX fuel rods. The analysis by COSMOS showed good agreement with the online measured in-pile behavior of MOX fuel.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.