17
Views
3
CrossRef citations to date
0
Altmetric
Technical Paper

Monte Carlo Investigation of Rebinning Material Density Distributions of Lung Parenchyma Phantoms in Proton Therapy

, , &
Pages 22-26 | Published online: 10 Apr 2017
 

Abstract

In this work we present a Monte Carlo study of proton irradiation of lung parenchyma phantoms for particle energies that are typically used for proton therapy, ranging from 150 to 200 MeV. The Bragg peaks of the proton beams were scored in a water phantom distal to voxelized slabs of lung material. A detailed lung parenchyma phantom was modeled and converted into a voxelized structure, with a resolution similar to that obtained by computed tomography, to study differences in the dose deposited by the proton beams distal to the phantom caused by merging small structures into larger voxels. The results show that the Bragg peak dose in water can vary by up to 11%, the distal edge degradation can be as large as 1.1 mm, and the maximum observed changes in the range at 90% of the dose are 0.4 mm in water. From our results, we conclude that computational proton dose predictions in a lung are associated with large uncertainties. To improve the accuracy of dose calculations, a more detailed model of lung parenchyma is needed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.