44
Views
0
CrossRef citations to date
0
Altmetric
Thermal Hydraulics

Nonhomogeneous-Nonequilibrium Two-Phase-Flow Model for Nuclear Reactor Single-Channel Stability Analysis

, &
Pages 78-88 | Published online: 20 Mar 2017
 

Abstract

The effects of two-phase-flow modeling on nuclear reactor single-channel stability analysis are investigated with four two-phase-flow models, namely, the homogeneous-equilibrium model, the homogeneous-nonequilibrium model, the nonhomogeneous-equilibrium model, and the nonhomogeneous-nonequilibrium model. The models are applied to hot-channel analyses of a proposed typical supercritical-water-cooled-reactor (SCWR) design. The neutral stability boundaries derived by using the four models are compared and plotted on the traditional subcooling number versus phase change number plane. To ensure proper development of the models, they are benchmarked to the experimental data. It is found that the homogeneous models predict more conservative stability boundaries than the nonhomogeneous models and that the differences of the stability boundaries predicted by all four two-phase-flow models are reduced under higher-pressure conditions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.