120
Views
13
CrossRef citations to date
0
Altmetric
Technical Paper

A Core Design Study for a Small Modular Boiling Water Reactor with Long-Life Core

, , &
Pages 364-374 | Published online: 20 Mar 2017
 

Abstract

This paper presents the core design and performance characteristics of the Novel Modular Reactor (NMR-50), a 50-MW(electric) small modular reactor. NMR-50 is a boiling water reactor with natural-circulation cooling and two layers of passive safety systems that enable the reactor to withstand prolonged station blackout and loss of ultimate heat sink accidents. The main goal in the core design is to achieve a long-life core (~10 years) without refueling for deployment in remote sites. Through assembly design studies with the CASMO-4 lattice code and coupled neutronics and thermal-hydraulic core analyses with the PARCS and RELAP5 codes, a preliminary NMR-50 core design has been developed to meet the 10-year cycle length with an average fuel enrichment of 4.75 wt% and a maximum enrichment of 5.0 wt%. The calculated fuel temperature coefficient and coolant void coefficient provide adequate negative reactivity feedbacks. The maximum fuel linear power density throughout the 10-year burn cycle is 18.7 kW/m, and the minimum critical power ratio is 2.07, both of which meet the selected design limits with significant margins. Preliminary safety analyses using the RELAP5 code show that the core will remain covered during the entire transient procedure of two design-basis loss-of-coolant accidents. These results indicate that the targeted 10-year cycle length is achievable while satisfying the operation and safety-related design criteria with sufficient margins.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.