4
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

An Evaluation of the Thermal-Hydraulic and Fuel Rod Thermal and Mechanical Deformation Behavior during the First Power Burst Facility Nuclear Blowdown Tests

, &
Pages 401-410 | Published online: 10 May 2017
 

Abstract

A preliminary evaluation was made of the results from the LOC-11 nuclear blowdown tests conducted in the Power Burst Facility. The objective of the LOC-11 tests was to measure the thermal and mechanical deformation behavior of pressurized and unpressurized fuel rods exposed to a blowdown (coolant depressurization) similar to that expected in a pressurized water reactor (PWR) during a hypothesized double-ended cold-leg break. Incipient fuel rod cladding collapse and swelling occurred during Test LOC-11C, when the two unpressurized and two pressurized PWR-type rods were exposed to a system blowdown with measured cladding temperatures increasing to 1030 K. To better understand the test results and to evaluate prediction capability, RELAP4-calculated coolant thermal-hydraulic and fuel rod thermal behavior and FRAP-T4-calculated fuel rod mechanical deformation behavior were compared with the test LOC-11C data. The RELAP4 posttest calculations of coolant behavior generally agreed well with the measured coolant behavior; however, the calculated cladding surface temperatures were ∼50 K greater than measured. The FRAP-T4 calculations of cladding deformation using “best-estimate” models slightly overpredicted the observed ballooning of the pressurized rods and underpredicted the collapse of the unpressurized rods.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.