11
Views
0
CrossRef citations to date
0
Altmetric
First International Retran Meeting

A One-Dimensional Reactor Kinetics Model for Retran

, , &
Pages 298-310 | Published online: 10 May 2017
 

Abstract

The RETRAN-01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. The principal assumption in deriving the point kinetics model is that the neutron flux may be separated into a time-dependent amplitude function and a time-independent shape function. Some transients cannot be correctly analyzed under this assumption, since proper definitions for core average quantities such as reactivity or lifetime include the inner product of the adjoint flux with the perturbed flux. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. The model is based on a space-time factorization method in which the neutron flux behavior is factored into a time-dependent amplitude function and a more slowly varying (in time) shape function. Results from simple slab geometry problems indicate good agreement with known solutions. Calculations that represent larger systems show that correct trends are predicted.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.