3
Views
1
CrossRef citations to date
0
Altmetric
Technical Paper

Analysis of Fission Gas Disposition in Light Water Reactor Steady-State Operation

, &
Pages 492-510 | Published online: 12 May 2017
 

Abstract

A model to predict fission gas behavior in irradiated uranium dioxide fuel during the steady-state operation of a nuclear reactor is developed. The basic physical phenomena encountered in analyzing the disposition of fission gas have been retained, but in a simplified form for ease of calculation. The analysis includes treatment of intragranular, grain face, and grain edge gas, and release to open spaces. The code is utilized to obtain comparison with experimental data and to perform fuel behavior studies. The sensitivity studies indicate the importance of grain face and grain edge bubble treatments in modeling fission gas. It is found that representation of release in different sections of the fuel pin is possible in a simple way by assuming evenly spaced bubbles on the edge, and that grain edge bubble interlinkage is a necessary condition for release to the open spaces. The sensitivity studies show that fission gas swelling is mainly due to grain edge bubbles. Grain face bubbles, although large in size, are few in number and contribute little to swelling. Intragranular swelling is intermediate between these two values. The code is successfully used to analyze the Westinghouse fission gas release data from the Zorita, Spain, light water reactor and data from the U.K. reactor DIDO. This success in modeling experiments suggests that the present code can be used in predicting fuel element performance, which is necessary in nuclear fuel design, safety analysis, and interpretation of experimental data on fuel element behavior.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.