3
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Evaluation of an Exponential Model for Germanium Detector Efficiencies

Pages 262-273 | Published online: 12 May 2017
 

Abstract

Germanium detector efficiencies for vial geometries are modeled as ∊ = k[1-exp(-bh)]/bh, where h is the sample fill-level of the vial and k and b are constants relative to h. The model is tested against experimental data generated with 6 germanium detectors (8.8 to 90% standard efficiencies), 3 vials (24- to 64-mm diameters, 4- to 65-mm fill-levels), and 11 gamma energies (88 to 1836 keV). These data represent over 1000 comparisons between the model and experimental measurements. The overall agreement is within a few percent, with average deviations <1.0% and root-mean-square deviations <3%. For typical applications, the model requires only a few (2 to 3) vial calibration measurements, as opposed to the larger number (6 to 8) typically used for empirical data fitting. Methods and examples are discussed for use of the general model. Limits of the gen eral model, attenuation corrections for different sample media, and nondestructive assay calibrations for slab samples are also discussed. Also, possible model extensions are discussed for including gamma-energy dependence and Marinelli counting geometries.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.