11
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Thermal Hydraulics of an External Water Wall Type Passive Containment Cooling System

, , &
Pages 241-250 | Published online: 10 May 2017
 

Abstract

An external water wall type containment cooling system is one of the passive containment cooling systems that use no active components and are intended for system simplification in the next generation power reactors. The core decay heat during a postulated loss-of-coolant accident is accumulated in the suppression pool (SP) and transferred to the outer pool, which is a cooling pool located outside and adjacent to the SP, by only natural phenomena such as natural convection, heat conduction, and evaporation. The temperature profiles and the convection heat transfer coefficients in the pools were measured using a 5-m height apparatus. The formation of a thermal stratification boundary at the vent outlets, which restricts the effective heat transfer area between pools, was clarified, and a correlation for natural convection heat transfer coefficients was obtained. Condensation heat transfer coefficients on the containment vessel wall and evaporation heat transfer coefficients on the SP surface under a noncondensable gas presence, which strongly affected the heat removal from the wet well, were evaluated based on the test results, and the correlations were obtained. The heat removal evaluation models, which analyze the trends of the temperatures and pressure, were developed and verified with system tests. As for the improvement of heat removal capability, two methods were proposed. One is a baffle plate to mitigate thermal stratification in the SP and enlarge the effective heat transfer area between pools. The second method is a divided wet well to avoid noncondensable gas effects. The thermal-hydraulic behavior in the SP with a baffle plate was clarified by three-dimensional analysis, and the effectiveness of these methods was experimentally confirmed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.