26
Views
5
CrossRef citations to date
0
Altmetric
Technical Note

Analysis of the Reactivity during a Pressurized Water Reactor Main-Steam-Line-Break Transient

, &
Pages 284-290 | Published online: 10 May 2017
 

Abstract

The main-steam-line-break (MSLB) transient in a pressurized water reactor (PWR) is a core overcooling event that can result in a large positive reactivity insertion. In most analyses the shutdown margin is sufficiently large that the core does not return to critical. However, some researchers have reported an increase in the core power even though the core does not return to critical. A simplified kinetics model based on the prompt-jump-kinetics approximation is reported in new work, and a single delayed neutron group is used to explain the core power increase during subcriticality. Specifically, it is shown that the multiplication of the initial delayed-neutron source as predicted by the rate of change of the reactivity during the transient is the reason for the increase in power even though the core never returns to criticality after scram. The results are demonstrated using data from a RETRAN-03 model of a hot-zero-power MSLB analysis of the Three Mile Island unit 1 PWR.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.