22
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Radiolytic and Chemical Degradation of Strong Acidic Ion-Exchange Resins: Study of the Ligands Formed

&
Pages 359-371 | Published online: 10 May 2017
 

Abstract

The formation of water-soluble organic ligands by radiolytic and chemical degradation of several strong acidic ion-exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were studied and their complexing properties evaluated.

Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulfate and dissolved organic carbon. High-performance liquid chromatography analysis indicated the presence of oxalate, contributing to 10 to 20% of the organic carbon. The identity of the remainder is unknown. The presence of oxalate as a complexant is consistent with results from earlier work. Complexation studies with Cu2+ and Ni2+ showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterized by its concentration ([X]T ~ 10-5 to 10-6 M), a deprotonation constant (pKH ~ 7.4 at I = 0.1 M), and a complexation constant for the NiX complex (log KNiX ~ 7.0 at I = 0.1 M).

In the absence of irradiation, no evidence for the formation of ligands was found.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.