151
Views
3
CrossRef citations to date
0
Altmetric
Article

Convection-Diffusion as a Model of the Early Current in the Giant Axon

Pages 77-90 | Received 24 Feb 1972, Published online: 02 Mar 2011
 

Abstract

Convection and diffusion in a membrane with a low density of fixed positive charges have been theoretically analysed as a model of the early current in the giant axon. The model can be regarded as a part of Teorell's excitability analogue. The non-linear transient behaviour of the model conductance has been numerically compared with the conductance associated with sodium activation, using Hodgkin & Huxley's equations. The two models show considerable similarities. The sigmoidal increase of the conductance under depolarization and the exponential decay under repolarization is well reproduced by the convection-diffusion model. The time constant of the model conductance is approximately a function of the instantaneous potential, as in the Hodgkin-Huxley theory. The voltage dependence of the time constant is also in agreement with Hodgkin & Huxley. A quantitative comparison has been made, giving the approximate values of the model parameters necessary for compatibility with squidaxon data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.