30
Views
9
CrossRef citations to date
0
Altmetric
Miscellaneous

β-Amyloid peptide as a target for treatment of Alzheimer’s disease

Pages 503-512 | Published online: 25 Feb 2005
 

Abstract

Alzheimer’s disease is a progressive neurodegenerative disorder characterised by a series of biochemical and histological changes although the net of relations and its initial cause is far from being fully understood. The amyloid hypothesis points out the pathological processing of a physiologically normal protein, the amyloid precursor protein, to neurotoxic forms of amyloid β-peptide as the origin of the cascade of biochemical changes that lead to Alzheimer’s disease. Normal APP processing involves three proteases, α-, β- and γ-secretase, to yield physiological amyloid fragments. Familial Alzheimer’s disease patients exhibit an increased activity of β- and γ-secretases, resulting in higher than average levels of small amyloid fragments, of 40 or 42 amino acids (Aβ40 and Aβ42, respectively). These newly formed Aβ40 and Aβ42 may suffer a conformational change followed by aggregation into fibrils and finally deposition as senile plaques in a complex process named fibrillogenesis, which is associated with neurotoxicity. Modulation of this multistep process is a reasonably hopeful approach for the treatment of Alzheimer’s disease. In a general sense, this approach can be divided in three groups: first, modulating the production of Aβ promoting the non-amyloidogenic route; second, inhibiting fibrillogenesis and third, by immunisation techniques, enhancing the formation of anti-Aβ antibodies in order to mark fibrils and plaques as targets for microglial cells.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.