284
Views
6
CrossRef citations to date
0
Altmetric
Patent Evaluations

Thirteen compounds promoting oligodendrocyte progenitor cell differentiation and remyelination for treating multiple sclerosis: WO2010054307

, PhD
Pages 1767-1773 | Published online: 18 Oct 2010
 

Abstract

Background: The application is in the field of cellular therapy and neural repair.

Objective: It aims at identifying and characterizing compounds and molecules that promote the differentiation of oligodendrocyte progenitor cells and remyelination of the nervous system.

Methods: Library of compounds and molecules were screened on a series of assays specifically designed and developed to assess the activity and potency of compounds and molecules on the differentiation of oligodendrocyte progenitor cells and on remyelination of nerve cells in in vitro and in vivo models, such as cultures of neural progenitor and stem cells, cerebellar organotypic cultures, the zebrafish and the cuprizone-mediated demyelination mouse models.

Results: In all, 13 compounds were identified and characterized, after a secondary screening, for inducing the differentiation of oligodendrocyte progenitor cells and for promoting myelination and remyelination in vitro and in vivo.

Conclusion: The 13 compounds, promoting the differentiation of oligodendrocyte progenitor cells and myelination of nerve cells, may be used for the treatment of multiple sclerosis (MS) and other myelin-related disorders. The application claims the use of the compounds to promote the differentiation of oligodendrocyte progenitor cells and endogenous remyelination for the treatment of demyelinating diseases alone or in combination with other agents and drugs, such as immunomodulatory, immunosuppressive, neuroprotective and neuroregenerative agents.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.