131
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Retiferols – synthesis and biological activity of a conceptually novel class of vitamin D analogs

, , &
 

Abstract

Introduction: The hypothesis that retiferols are a novel class of vitamin D analogs with therapeutic potential has been recently proved. The CD-ring of vitamin D, originated from a steroid precursor, is not necessary for biological activity. The retiferol, disubstituted at C-13, was bound to the ligand-binding domain (LBD) of vitamin D receptor (VDR) just like the vitamin D hormone [1,25-(OH)2D3]. This finding opens the way for retiferols as a novel class of vitamin D therapeutics.

Areas covered: This review presents the concept of retiferols and their structure evolution. Medicinal chemistry and therapeutic perspective of retiferols are reviewed showing how these vitamin D analogs became a source of potential therapeutics.

Expert opinion: Docking experiments and molecular modeling have shown that positioning of vitamin D analog at the LBD of VDR is not disturbed by deletion of a large portion of the vitamin D, exactly as hypothesized. Twenty years of structural modifications have shown that removal of the CD-ring fragment and regioselective methylation results in an almost complete loss of the undesired calcemic activity of retiferol while gaining the agonistic activity comparable to that of 1,25-(OH)2D3.

Acknowledgement

Dedicated to Dr Hector F DeLuca, Harry Steenbock Research Professor at the University of Wisconsin-Madison, on the occasion of his 85th birthday.

Notes

This box summarizes key points contained in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.