499
Views
83
CrossRef citations to date
0
Altmetric
Review

Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents

, , , &
Pages 573-593 | Published online: 26 Apr 2007
 

Abstract

The emergence of resistance to existing antibiotics demands the development of novel antimicrobial agents directed against novel targets. Historically, bacterial cell wall synthesis, protein, and DNA and RNA synthesis have been major targets of very successful classes of antibiotics such as β-lactams, glycopeptides, macrolides, aminoglycosides, tetracyclines, rifampicins and quinolones. Recently, efforts have been made to develop novel agents against validated targets in these pathways but also against new, previously unexploited targets. The era of genomics has provided insights into novel targets in microbial pathogens. Among the less exploited – but still promising – targets is the family of 20 aminoacyl-tRNA synthetases (aaRSs), which are essential for protein synthesis. These targets have been validated in nature as aaRS inhibition has been shown as the specific mode of action for many natural antimicrobial agents synthesized by bacteria and fungi. Therefore, aaRSs have the potential to be targeted by novel agents either from synthetic or natural sources to yield specific and selective anti-infectives. Numerous high-throughput screening programs aimed at identifying aaRS inhibitors have been performed over the last 20 years. A large number of promising lead compounds have been identified but only a few agents have moved forward into clinical development. This review provides an update on the present strategies to develop novel aaRS inhibitors as anti-infective drugs.

Disclosure

All of the authors are employees of Replidyne, Inc.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.