81
Views
11
CrossRef citations to date
0
Altmetric
Review

Non-dopaminergic drug treatment of Parkinson’s disease

Pages 557-572 | Published online: 24 Feb 2005
 

Abstract

Several lines of evidence suggest that substitution of the dopaminergic striatal deficit only represents one important aspect of the treatment of Parkinson’s disease (PD) because neurotransmitter systems other than the dopaminergic one also degenerate and aggravate parkinsonian motor, vegetative and cognitive symptoms. Thus, regulation and balance of altered non-dopaminergic neurotransmission could provide an additional benefit for parkinsonian patients (PP). Moreover, onset of motor complications, psychosis and loss of drug efficacy increasingly reduce parkinsonian quality of life in the course of long-term dopamine substitution. Indirect stimulation of the dopaminergic neurotransmission via non-dopaminergic systems is an upcoming interesting strategy to solve these problems. Treatment of l-dopa-associated dyskinesias represents a further important future task of non-dopaminergic drug therapy. NMDA antagonists are a promising therapeutic option but further trials are necessary to elucidate their efficacy. A further peripheral effect of l-dopa/dopa decarboxylase inhibitor (DDI) application is increased homocysteine synthesis with its putative hypothetical additional central impact on neurodegeneration and progression of PD. Long-term monitoring with subsequent therapeutic decrease of homocysteine levels with folic acid could result in substantial clinical benefits at reasonable costs for PP. Also, it could hypothetically influence altered dopaminergic and non-dopaminergic neurotransmission beside its impact on occurrence of vascular disease and altered striatal microvascularisation in PD. The interesting field of non-dopaminergic drug therapy is emerging and will hopefully lead to a better understanding of PD and subsequently improve drug therapy of parkinsonian symptoms, which do not respond to dopaminergic substitution or are long-term complications of dopamine substitution.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.