343
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Novel ways to target brain tumour metabolism

, &
Pages 1227-1239 | Published online: 02 Jun 2011
 

Abstract

Introduction: Glioblastoma remains a highly aggressive primary brain cancer with very poor prognosis. The detection of mutations in the metabolic enzyme isocitrate dehydrogenase in gliomas, has broadened our view of tumourigenic mechanisms. Together with renewed awareness of tumour-specific energy metabolism, research is pointed towards novel ways for targeting brain cancer.

Areas covered: This paper reviews recent knowledge on the possible tumourigenic mechanism of mutant isocitrate dehydrogenase, and provides a detailed overview of cancer-specific metabolic enzymes associated with glycolysis and intracellular pH regulation. It also discusses available drugs that may serve as a basis for novel drug development to target metabolic transformation in gliomas.

Expert opinion: Despite the fact that energy metabolism is a very basic cellular process, tumour specific alterations in key metabolic processes represent promising targets for glioma treatment. Novel therapies against gliomas, including those that target metabolic transformation, need to consider the genetic background of the individual tumours, to allow the correlation of treatment response with the underlying biological status, both in preclinical and clinical studies.

Notes

This box summarizes key points contained in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.