1,094
Views
134
CrossRef citations to date
0
Altmetric
Reviews

Biomaterial-based scaffolds – current status and future directions

&
 

Abstract

Introduction: Biomaterial-based scaffold formulations (three-dimensional Porous matrix, nano-fibre mesh, hydrogels and microspheres) are the major components that are used to deliver the bioactive molecules into the body organs through different routes for an effective treatment of various diseases.

Areas covered: Various fabrication techniques such as freeze-drying, polymerisation, spray drying, gas foaming, supercritical fluid technology, etc., are successfully used for fabrication of scaffold formulations. Due to their unique characteristics, these formulations are widely used against various diseases such as tuberculosis, bone defects, cartilage repair, skin diseases, cardiovascular diseases, periodontal diseases, wound dressing, etc.

Expert opinion: The study of biomaterial-based scaffold formulations is exhilarating with novel approaches to drug/cell/gene delivery being developed all the time. At present, there is a huge extent of research being performed worldwide on all aspects of tissue engineering/drug or gene delivery. In the future, the main focus will be on the development of more patient compliant, sustained and controlled delivery systems against various diseases by modification of polymers, manufacturing technologies as well as carrier systems.

Acknowledgement

Authors AK Goyal (under IYBA scheme; BT/01/IYBA/2009 dated 24/05/2010) and T Garg are thankful to Department of Biotechnology (DBT), New Delhi, India and Punjab Technical University, Jalandhar.

Declaration of interest

The authors state no conflict of interest and have received no payment in preparation of this manuscript.

Notes

This box summarises key points contained in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.